T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文) 	個人ばく露測定の方法 - 産業衛生技術部会のガイドラインとその活用	
Title(English)	The Personal Exposure Monitoring Method - JSOH Guideline	
著者(和文)	橋本晴男	
Authors(English)	Haruo Hashimoto	
出典(和文)	第88回日本産業衛生学会,,,	
Citation(English)	88th Japan Society for Occupational Health Conference, , ,	
発行日 / Pub. date	2015, 5	

個人ばく露測定の方法

一産業衛生技術部会のガイドラインとその活用ー

2015. 5. 16

東京工業大学 大学マネジメントセンター 特任教授

(前所属:東燃ゼネラル石油(株)産業衛生部長)

橋本 晴男

「個人ばく露測定の方法」一内容

- 1. リスクアセスメントと個人ばく露測定の関係
- 2. 個人ば〈露測定のガイドライン
 - 作業場の事前調査
 - 測定計画~測定~結果の評価
 - 対策とフォローアップ
 - 誰が行うのか
- 3. まとめ

本発表の趣旨

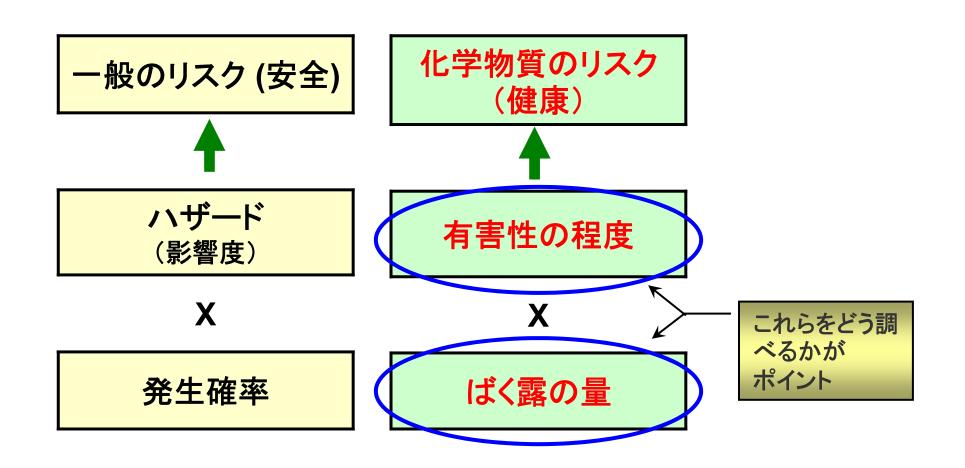
リスクアセスメントの実施義務化(640物質)に伴って、現在考えられている方法はいくつかある

- ① コントロールバンディング
 - » 非常に容易. 厚生労働省のHPに半自動ツールあり.
- ② 簡易測定
 - » 検知管、直読計器など
- ③ 個人ばく露測定
- ◆ これらの相互関係、全体像を整理し、 リスクアセスメントにおける個人ばく露測定の意義、位置付けを明確にする。その上で、
- ◆ 個人ばく露測定の方法を紹介する
 - 産業衛生技術部会による「個人ばく露測定のガイドライン」
 - これは、内容として、「<u>リスクアセスメントのガイドライン」でもある</u>

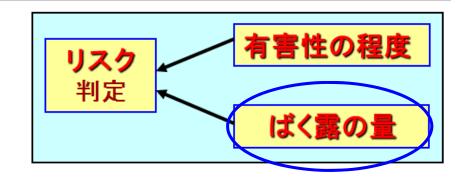
「リスクアセスメント」の進め方(全体像)

◆ その方法は多様で、複合的

- 状況に応じ、以下の1つまたは複数を組合わせて実施
- リスクアセスメント実施者が、本来「考えながら」行うもの

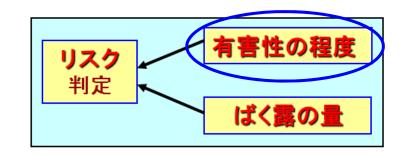

No.	方法	内容
A	作業場の事前調査による 専門的判断	実施者(*)が主に経験をもとに判断 - 信頼性は必ずしも低くない
В	コントロールバンディング	簡単なもの ~やや複雑なものまであり
С	簡易測定	検知管(約220/640物質) 直読計(約210/640物質)、等
	個人ば〈露測定	8hr測定(1シフト) 短時間測定(作業毎)
D	D1: 簡易的	サンプル数、測定時間など簡略化
	D2:標準的	同じく、十分に

^{*} リスクアセスメントの実施担当者を事業場内で分散させず、特定者に集約し、経験を蓄積させることが望ましい


1. リスクアセスメントと個人ばく露測定の関係

◆ リスクを評価・判定するための要素

「ばく露の量」の評価


- ◆ 測定する
 - 個人ば〈露測定(最も標準的)
 - ・ 「呼吸域」での測定

- ◆ 他の評価方法
 - 「ばく露の推定」も可能
 - 生物学的モニタリング
 - 場の測定(代替法. または法に基づく作業環境測定)

「有害性の程度」の評価

- ◆ 「ばく露限界値」を使用(最も標準的)
 - 有害性の程度(健康影響)と関連して、 科学的エビデンスをもとに設定

- ◆ それ以外の評価基準
 - 生物学的ばく露指標値(生物学的モニタリングの場合)
 - 管理濃度(法に基づく作業環境測定の場合)
 - 但し、これは、正確には「有害性」ではなく、「作業環境良否の基準」

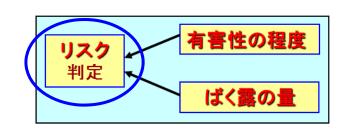
ばく露限界値

◆ 定義

その環境下で労働者が1日8時間、毎週、労働者が長年月にわたってばく露されても、ほとんどの労働者に健康影響が発生しないと考えられる濃度

◆ 代表的なばく露限界値

- (1) TLV (Threshold Limited Value, 閾限界值)
 - 米国産業衛生専門家会議(ACGIH)が設定
 - 約700+物質対象
- (2) 許容濃度
 - 日本産業衛生学会が設定
 - 約200+物質対象


ACGIH: American Conference of Government Industrial Hygienist

リスクの判定:ばく露濃度とばく露限界値の比較

◆「ばく露比」に着目

◆ リスクの判定(単純な例)

評価区分(ばく露比)		
1.0 以上	1.0 >	
リスク大	/]\	

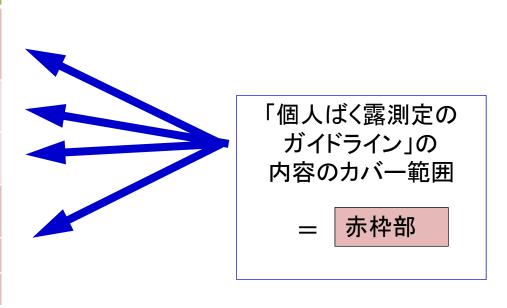
個人ばく露測定 = リスクア セスメントの最も基本法

- 定法. 王道
- グローバルスタンダード
- 必要不可欠

2. 個人ばく露測定のガイドライン(産業衛生技術部会)

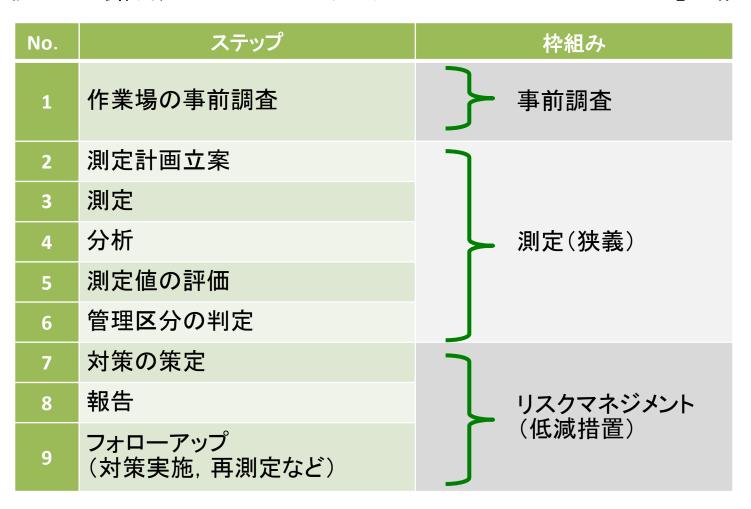
◆ 目的

- 個人ばく露測定に関する実用上のガイドを提案する


◆ 対象範囲

- 全ての化学物質、全ての作業場(原則, ばく露限界値がある物質)
- リスクアセスメントにおいて、任意で使用できるもの
- 法制度上の規定や方法に関わるものではない
- ◆ 産業衛生学雑誌2015年3月号に掲載済
 - 約50ページ
 - ガイドライン本文 + 補足資料(詳細情報)
- ◆ 日本産業衛生学会 産業衛生技術部会「個人ばく露測定に関する委員会」 が作成

「個人ばく露測定のガイドライン」の内容の範囲は広い


◆「リスクアセスメントのガイドライン」としても用いることができる

No	リスクアセスメントの方法
A	作業場の事前調査による 専門的判断
В	コントロールバンディング
	簡易測定
	個人ばく露測定
D	D1: 簡易的
	D2:標準的

個人ばく露測定の進め方(個人ばく露測定のガイドライン)

- ◆ 以下の枠組み(手順)で進める
 - 個人ばく露測定に基づいた「リスクアセスメントとマネジメント」に相当

ばく露の評価・測定の対象 - "同等ばく露グループ(SEG)"

- ◆ 同じ作業をする「グループ」単位で評価する
 - 「<u>同等ばく露グループ(SEG)</u>」という
 - ほぼ等しいばく露を受ける作業者群

SEG: Similar Exposure Group

- ◆ ばく露の全体像を評価する
 - ばく露の平均値、分布など
 - サンプル中の最大値で評価しない

概念:作業者全員を測定することケースを出発点とし,効率的に進めるために, 類似のばく露者をグループ化する,と解釈してよい.

「作業場の事前調査」一重要性が高い

ステップ 1

◆ 目的(決定すべき重要な事項)

順序	決定すべき重要事項
1	評価対象とする化学物質
2	同等ばく露グループ(SEG)
3	ばく露の推定(ばく露の有無と程度) (SEG毎, 化学物質毎, 8hr/短時間別)
4	測定の要否
5	必要なばく露低減措置の候補案

測定計画(リスク アセスメント)に 反映

◆ 方法

- 作業場での文書・記録類調査
- 職場管理者へのヒアリング、作業場の観察
- 簡易測定も可(次演者の発表も参照)
 - 事前調査の一部として
- <u>コントロールバンディング(スクリーニング法として)</u>

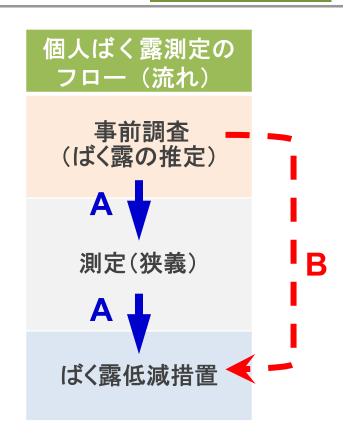
ばく露の推定ーその根拠

◆ 推定の主な根拠と例

根拠	例
過去の評価・測定結果	対象SEGでの過去の結果
代替・類似データ	類似した作業場やSEGの過去の結果(経験!!)
対象化学物質の特性	取扱い量. ばく露限界値. 毒性
設備	排気・換気装置. 密閉系か.
作業状況	作業頻度. 距離など
簡易測定の結果	検知管、直読機器 ◆

事前調査の一部として行うこと可

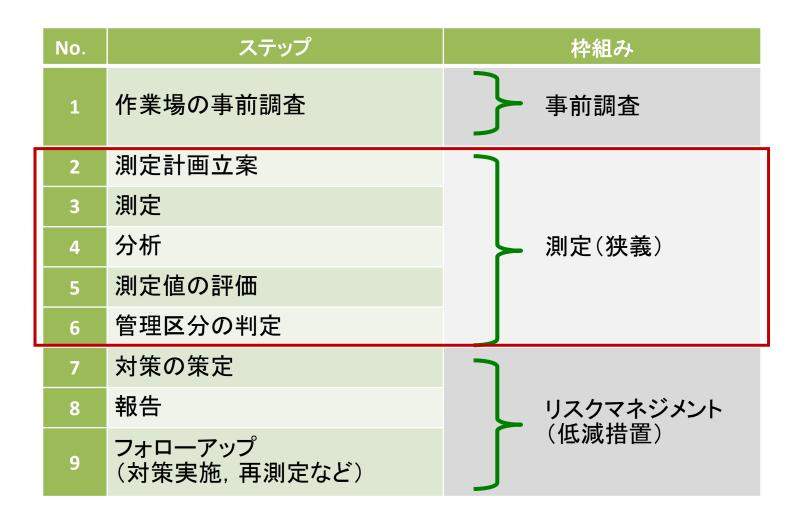
◆ 経験がが極めて重要


- 経験がない場合, ばく露の推定は難しい
- 自信がない場合、無理に推定しない. 優先的に測定対象とする

事前調査結果(ばく露推定)の活用(判断)

ステップ 1

- 1. 測定要否 /リスクアセスメント方法の判断
 - 測定するケース(右図, A)
 - 「測定しない」選択肢もある(右図, B)
 - 例:ばく露が明らかに小.
 - 例: " 明らかに大.
 - 目的は「ばく露低減措置」、「測定」ではない
- 2. 測定内容の判断
 - C, D1, D2のいずれか


N	リスクアセスメントの方法
??	作業場の事前調査による 専門的判断
E	コントロールバンディング
??	簡易測定(追加可)
	個人ばく露測定
??	D1: 簡易的
??	D2:標準的

リスクに応じた 合理的な進め方

個人ばく露測定の進め方(個人ばく露測定のガイドライン)

◆ 測定計画~測定~結果の評価

- ◆ SEGを設定
 - SEGごとに測定実施要否、測定計画を判断
- ◆ 被測定者の選択、測定サンプル数(n数)
 - nが5以上が推奨される.
 - nが4以下でも可.
 - 被測定者は「ランダムに」選択する
 - 「日間の変動」「作業場間の変動」を特に考慮しない.
- ◆ 測定時間(1シフト測定)
 - 原則は8時間(またはできるだけ長い時間)
 - 状況により、2時間まで短縮可能 ←

簡易化可能= 「D1法」

ステップ 5, 6

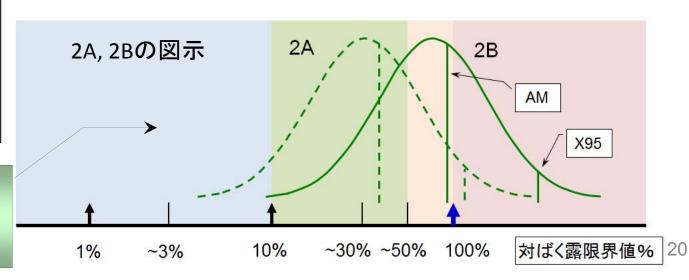
- 1. 各8hr値ばく露値のセット(n個)から次を算出する
 - 平均値(算術平均):AM
 - 対数正規分布の95パーセンタイル値:X₉₅
 - 幾何標準偏差:GSD

X₉₅、AMの計算は作業環境測定での 第1評価値(E1)、第2評価値(E2)と同.

対数正規分布

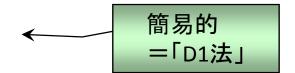
同(x軸を対数化)

 $log(X_{95}) = log(GM) + 1.645log(\sigma_g)$ (GM:幾何平均値)


区分	定義		解釈(判定)
1A	V 05:	X ₉₅ < (OEL*10%)	極めて良好
1B	X ₉₅ < OEL かつ	AM < (OEL*10%)	十分に良好
1C	13 - 3	(OEL*10%) ≤ AM	良好
2A	AM ≤ OEL ≤ X ₉₅ かつ	AM ≤ (OEL*50%)	現対策の有効性を精査. 更なるばく露低減に努める
2B	かり	(OEL*50%) < AM	ばく露低減策を行う
3	OEL < AM		ばく露低減策を速やかに行う

OEL: ばく露限界値 AM: 算術平均値

X95: 分布の上側95%値


大きな区分1~3は作業環 境測定の管理区分と同じ

区分2Bでは、作業者の 最大50%弱のばく露が 基準値を超えてしまう

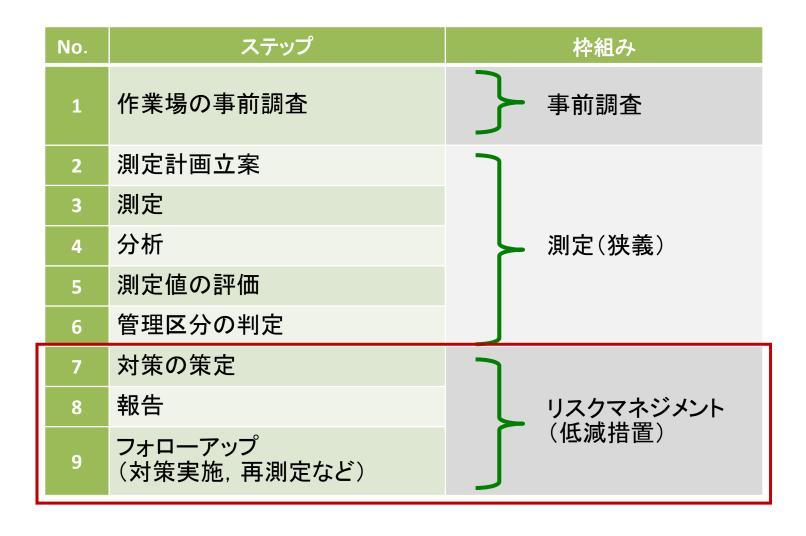
<u>測定結果の評価:1シフト測定(8hr)</u>

4. サンプル数(n)が4以下の場合の方法

n=	算術平均値(AM)	95パーセンタイル値(X ₉₅)
1	その値をAMとする	
2		AMの3倍値とする
3	サンプルデータからその まま算出する	$AM \times 3 = X_{95}$
4	66 年 田 7	

ステップ 2~6

短時間の測定と結果の評価


- 1. 短時間の測定(例:15分間)を行う理由(例)
 - 1シフト測定でばく露が大きく、その原因として短時間の作業が疑われる場合
 - 短時間での高いばく露が推定される場合(1シフト測定の結果によらず)
- 2. 適用するばく露限界値(ACGIH-TLV、定めのある物質のみ)
 - STEL
 - ・「1日中のどの時間にも超えてはならない、15分時間加重平均ばく露濃度」
 - 天井値
 - 「どの時間であっても超えてはならないばく露濃度」
 - ばく露が最大と予想される時間を含む短時間測定(例:5分間)。
 - 定めのない物質
 - 「TWA(8hr値) x 3倍」をSTELとして代用

測定結果の取扱い方,管理の区分は8時間測定と同じ

個人ばく露測定の進め方(個人ばく露測定のガイドライン)

- 対策~フォローアップ

管理対策の策定(リスク管理)

ステップ 7

- ◆ 管理対策の優先順位は常に一定
 - 世界共通の概念.
 - リスク評価の方法(個人ばく露/場の測定、等)によらず いわゆる「3管理」
 - ① 物質の変更、工学的対策(自動化、密閉化、換気等)
 - ② 作業方法の改善
 - ③ 保護具(最後の手段)
 - 以上に加え、追加測定、健康管理、リスクコミュ ニケーション(周知、教育)を適宜行う

個人ばく露測定に基づく対策もこの優先順位

- ← 作業環境管理
- ← 作業管理
- ← 健康管理

再評価・測定の考え方

- ◆ 一定頻度で再測定を繰返すことはしないでよい
- ◆ 再「評価」と再「測定」を分けて捉える
 - まず再「評価」し、次いで再「測定」する
- ① 定義:再「評価」
 - 作業場を観察し、管理者にヒアリングして、SEGのばく露を再推定し、 前回の評価・測定結果と比較すること
 - (初回の)「作業場の事前調査」に類似
- ② 定義:再「測定」
 - 必要と判断された場合に、再度測定すること. (測定しない事もある)

再評価・測定の頻度(間隔)[8時間ばく露に関して]

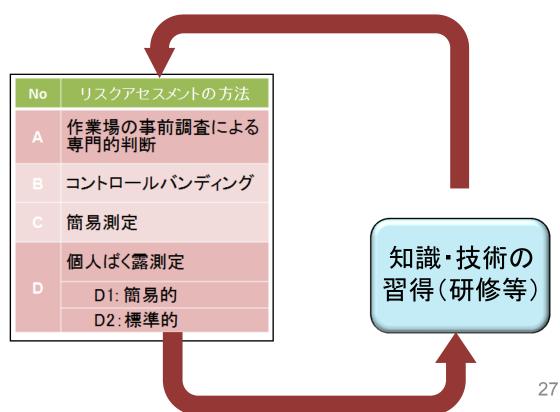
◆ 原則的な間隔を示す

- カッコ内は、<mark>状況判断により延長可能な間隔(基準範囲)を示す。</mark>
 - リスクに基づく合理的な管理,管理レベル向上のインセンティブに繋がる
- 前提条件:「変更管理」の実施
 - 設備, 工程, 取扱い物質などの変更時, リスクアセスメントを行う

再評価	管理区分(初回評価)					
/再測定	3	2B	2A	1C	1B	1A
再評価	6月	6月	6月 (6月 [~] 1年)	6月 (6月 [~] 2年)	1年 (1 [~] 3年)	2年 (2 [~] 3年)
再測定	6月 (6月~1年)	6月 (6月~1年)	6月 (6月 [~] 2年)	1年 (1 [~] 3年)	2年 (1 [~] 3年)	3年 (1 [~] 5年)

6月が基本(リスク大)

6月より延長(リスク比較的小)


個人ばく露測定に関わる専門家一誰が行うのか?

2通り定める

- ◆「統括管理者」
 - 全体を統括、管理する者(ステップ1~9)
- ◆「測定担当者」
 - 「測定・分析」だけを行う補助者(ステップ3~6)

両者とも、経験と、 知識の積重ねにより 専門性を高めるべき

実践• 経験

「個人ばく露測定の方法」- まとめ

- 1. リスクアセスメントと個人ばく露測定の関係
 - リスクアセスメントの方法は幾つかあり、複合的に用いること可
 - 個人ばく露測定はリスクアセスメントに不可欠
- 2. 個人ばく露測定のガイドライン = リスクアセスメントのガイドでもある
 - 作業場の事前調査が極めて重要 = リスクアセスメントそのものの一部
 - 簡易測定 /個人ばく露測定(簡易的) /個人ばく露測定(標準的)の中で 選択肢あり
 - 「標準的な測定」にこだわらなくてよい。
 - 6区分の「管理区分」を設定
 - 再評価・再測定の頻度を設定. 一定の柔軟な判断が可
 - 統括管理者、測定担当者の実践経験、知識向上が必要
- ◆ リスクアセスメントを進める上で、積極的な活用をお願いしたい

本「ガイドライン」へのご理解と積極的なご活用を よろしくお願いいたします。 ◆ Back-up Slides

リスクの判定:もう少し丁寧な判定も可能

例

- ◆「ばく露比」に基づく評価区分を細分化する
- ◆ 物質の有害性に応じて、判定基準に「重み」をつける
 - 例:発がん物質は、より安全側で判定する

ばく露比 = ばく露<u></u> ばく露限界値

評価区分(ばく露比)		
1.0 以上	1.0 >	
リスク大	/]/	

最も単純な判定基準

リスクの判定:基本の方法

◆「ばく露比」をもとに、「ばく露区分」を設定し、リスクを分類

ばく露区分(ばく露比 = 実ばく露/ばく露限界値)						
A B C D E 1.0 以上 ≥ 0.5 ≥ 0.1 ≥ 0.01 ばく露なし						
リスク高	中	毌	低	低		

区分の例

リスク高	新規対策の実施
中	状況精査、再評価、現対策維持,教育
低	監視

対応の例

リスクの判定:応用的な方法 (A社) - 有害性に応じた重み着け:リスクマトリックス -

	ばく露区分(ばく露比 = 実ばく露/ばく露限界値)					
有害性 (eg. 発がん性)	A 1.0 以上	B ≥ 0.5	C ≥ 0.1	D ≥ 0.01	E ばく露なし	
I (きわめて大)	1	1	2	2	3	
Ⅱ (大)	1	1	12	3	3	
皿 (中)	1	2	2	3	3	
IV (小)	2	2	3	3	3	

くリスクレベル: 1=高, 2=中, 3=低>

出典: 化学物質等のリスクアセスメント・マネジメントハンドブック(日本作業環境測定協会)